微积分学/积分表

微积分学/积分表

← 导数表

微积分学

积分表

目录

1 运算法则

2 幂函数

3 三角函数

3.1 基本三角函数

3.2 倒數三角函数

3.3 降阶公式

3.4 显形式

3.5 反三角函数

4 指数和对数函数

4.1 降阶公式

5 反三角函数

6 双曲函数

6.1 基本双曲函数

6.2 倒数双曲函数

6.3 反双曲函数

7 杂项

8 定积分

运算法则

编辑

c

f

(

x

)

d

x

=

c

f

(

x

)

d

x

{\displaystyle \int c\cdot f(x)\mathrm {d} x=c\cdot \int f(x)\mathrm {d} x}

(

f

(

x

)

±

g

(

x

)

)

d

x

=

f

(

x

)

d

x

±

g

(

x

)

d

x

{\displaystyle \int {\big (}f(x)\pm g(x){\big )}\mathrm {d} x=\int f(x)\mathrm {d} x\pm \int g(x)\mathrm {d} x}

u

d

v

=

u

v

v

d

u

{\displaystyle \int u\,dv=uv-\int v\,du}

幂函数

编辑

d

x

=

x

+

C

{\displaystyle \int \mathrm {d} x=x+C}

a

d

x

=

a

x

+

C

{\displaystyle \int a\,\mathrm {d} x=ax+C}

x

n

d

x

=

x

n

+

1

n

+

1

+

C

(

n

1

)

{\displaystyle \int x^{n}\mathrm {d} x={\frac {x^{n+1}}{n+1}}+C\qquad (n\neq -1)}

d

x

x

=

ln

|

x

|

+

C

{\displaystyle \int {\frac {\mathrm {d} x}{x}}=\ln |x|+C}

d

x

a

x

+

b

=

ln

|

a

x

+

b

|

a

+

C

(

a

0

)

{\displaystyle \int {\frac {\mathrm {d} x}{ax+b}}={\frac {\ln |ax+b|}{a}}+C\qquad (a\neq 0)}

三角函数

编辑

基本三角函数

编辑

sin

(

x

)

d

x

=

cos

(

x

)

+

C

{\displaystyle \int \sin(x)\mathrm {d} x=-\cos(x)+C}

cos

(

x

)

d

x

=

sin

(

x

)

+

C

{\displaystyle \int \cos(x)\mathrm {d} x=\sin(x)+C}

tan

(

x

)

d

x

=

ln

|

cos

(

x

)

|

+

C

{\displaystyle \int \tan(x)\mathrm {d} x=-\ln |\cos(x)|+C}

sin

2

(

x

)

d

x

=

1

cos

(

2

x

)

2

d

x

=

x

2

sin

(

2

x

)

4

+

C

{\displaystyle \int \sin ^{2}(x)\mathrm {d} x=\int {\frac {1-\cos(2x)}{2}}\mathrm {d} x={\frac {x}{2}}-{\frac {\sin(2x)}{4}}+C}

cos

2

(

x

)

d

x

=

1

+

cos

(

2

x

)

2

d

x

=

x

2

+

sin

(

2

x

)

4

+

C

{\displaystyle \int \cos ^{2}(x)\mathrm {d} x=\int {\frac {1+\cos(2x)}{2}}\mathrm {d} x={\frac {x}{2}}+{\frac {\sin(2x)}{4}}+C}

tan

2

(

x

)

d

x

=

tan

(

x

)

x

+

C

{\displaystyle \int \tan ^{2}(x)\mathrm {d} x=\tan(x)-x+C}

倒數三角函数

编辑

sec

(

x

)

d

x

=

ln

|

sec

(

x

)

+

tan

(

x

)

|

+

C

=

ln

|

tan

(

x

2

+

π

4

)

|

+

C

=

2

a

r

t

a

n

h

(

tan

(

x

2

)

)

+

C

{\displaystyle \int \sec(x)\mathrm {d} x=\ln {\Big |}\sec(x)+\tan(x){\Big |}+C=\ln \left|\tan \left({\frac {x}{2}}+{\frac {\pi }{4}}\right)\right|+C=2\mathrm {artanh} \left(\tan \left({\frac {x}{2}}\right)\right)+C}

csc

(

x

)

d

x

=

ln

|

csc

(

x

)

+

cot

(

x

)

|

+

C

=

ln

|

tan

(

x

2

)

|

+

C

{\displaystyle \int \csc(x)\mathrm {d} x=-\ln {\Big |}\csc(x)+\cot(x){\Big |}+C=\ln \left|\tan \left({\frac {x}{2}}\right)\right|+C}

cot

(

x

)

d

x

=

ln

|

sin

(

x

)

|

+

C

{\displaystyle \int \cot(x)\mathrm {d} x=\ln |\sin(x)|+C}

sec

2

(

a

x

)

d

x

=

tan

(

a

x

)

a

+

C

{\displaystyle \int \sec ^{2}(ax)\mathrm {d} x={\frac {\tan(ax)}{a}}+C}

csc

2

(

a

x

)

d

x

=

cot

(

a

x

)

a

+

C

{\displaystyle \int \csc ^{2}(ax)\mathrm {d} x=-{\frac {\cot(ax)}{a}}+C}

cot

2

(

a

x

)

d

x

=

x

cot

(

a

x

)

a

+

C

{\displaystyle \int \cot ^{2}(ax)\mathrm {d} x=-x-{\frac {\cot(ax)}{a}}+C}

sec

(

x

)

tan

(

x

)

d

x

=

sec

(

x

)

+

C

{\displaystyle \int \sec(x)\tan(x)\mathrm {d} x=\sec(x)+C}

sec

(

x

)

csc

(

x

)

d

x

=

ln

|

tan

(

x

)

|

+

C

{\displaystyle \int \sec(x)\csc(x)\mathrm {d} x=\ln |\tan(x)|+C}

降阶公式

编辑

sin

n

(

x

)

d

x

=

sin

n

1

(

x

)

cos

(

x

)

n

+

n

1

n

sin

n

2

(

x

)

d

x

+

C

(

n

>

0

)

{\displaystyle \int \sin ^{n}(x)\mathrm {d} x=-{\frac {\sin ^{n-1}(x)\cos(x)}{n}}+{\frac {n-1}{n}}\int \sin ^{n-2}(x)\mathrm {d} x+C\qquad (n>0)}

cos

n

(

x

)

d

x

=

cos

n

1

(

x

)

sin

(

x

)

n

+

n

1

n

cos

n

2

(

x

)

d

x

+

C

(

n

>

0

)

{\displaystyle \int \cos ^{n}(x)\mathrm {d} x=-{\frac {\cos ^{n-1}(x)\sin(x)}{n}}+{\frac {n-1}{n}}\int \cos ^{n-2}(x)\mathrm {d} x+C\qquad (n>0)}

tan

n

(

x

)

d

x

=

tan

n

1

(

x

)

(

n

1

)

tan

n

2

(

x

)

d

x

+

C

(

n

1

)

{\displaystyle \int \tan ^{n}(x)\mathrm {d} x={\frac {\tan ^{n-1}(x)}{(n-1)}}-\int \tan ^{n-2}(x)\mathrm {d} x+C\qquad (n\neq 1)}

sec

n

(

x

)

d

x

=

sec

n

1

(

x

)

sin

(

x

)

n

1

+

n

2

n

1

sec

n

2

(

x

)

d

x

+

C

(

n

1

)

{\displaystyle \int \sec ^{n}(x)\mathrm {d} x={\frac {\sec ^{n-1}(x)\sin(x)}{n-1}}+{\frac {n-2}{n-1}}\int \sec ^{n-2}(x)\mathrm {d} x+C\qquad (n\neq 1)}

csc

n

(

x

)

d

x

=

csc

n

1

(

x

)

cos

(

x

)

n

1

+

n

2

n

1

csc

n

2

(

x

)

d

x

+

C

(

n

1

)

{\displaystyle \int \csc ^{n}(x)\mathrm {d} x=-{\frac {\csc ^{n-1}(x)\cos(x)}{n-1}}+{\frac {n-2}{n-1}}\int \csc ^{n-2}(x)\mathrm {d} x+C\qquad (n\neq 1)}

cot

n

(

x

)

d

x

=

cot

n

1

(

x

)

n

1

cot

n

2

(

x

)

d

x

+

C

(

n

1

)

{\displaystyle \int \cot ^{n}(x)\mathrm {d} x=-{\frac {\cot ^{n-1}(x)}{n-1}}-\int \cot ^{n-2}(x)\mathrm {d} x+C\qquad (n\neq 1)}

a

2

x

n

sin

(

a

x

)

d

x

=

n

x

n

1

sin

(

a

x

)

a

x

n

cos

(

a

x

)

n

(

n

1

)

x

n

2

sin

(

a

x

)

d

x

{\displaystyle a^{2}\int x^{n}\sin(ax)\mathrm {d} x=nx^{n-1}\sin(ax)-ax^{n}\cos(ax)-n(n-1)\int x^{n-2}\sin(ax)\mathrm {d} x}

a

2

x

n

cos

(

a

x

)

d

x

=

a

x

n

sin

(

a

x

)

+

n

x

n

1

cos

(

a

x

)

n

(

n

1

)

x

n

2

cos

(

a

x

)

d

x

{\displaystyle a^{2}\int x^{n}\cos(ax)\mathrm {d} x=ax^{n}\sin(ax)+nx^{n-1}\cos(ax)-n(n-1)\int x^{n-2}\cos(ax)\mathrm {d} x}

显形式

编辑

sin

n

(

x

)

d

x

=

cos

(

x

)

2

F

1

(

1

2

,

1

n

2

;

3

2

;

cos

2

(

x

)

)

+

C

{\displaystyle \int \sin ^{n}(x)\mathrm {d} x=-\cos(x)_{2}F_{1}\left({\frac {1}{2}},{\frac {1-n}{2}};{\frac {3}{2}};\cos ^{2}(x)\right)+C}

cos

n

(

x

)

d

x

=

1

n

+

1

s

g

n

(

sin

(

x

)

)

cos

n

+

1

(

x

)

2

F

1

(

1

2

,

n

+

1

2

;

n

+

3

2

;

cos

2

(

x

)

)

+

C

(

n

1

)

{\displaystyle \int \cos ^{n}(x)\mathrm {d} x=-{\frac {1}{n+1}}\mathrm {sgn} (\sin(x))\cos ^{n+1}(x)_{2}F_{1}\left({\frac {1}{2}},{\frac {n+1}{2}};{\frac {n+3}{2}};\cos ^{2}(x)\right)+C\qquad (n\neq -1)}

tan

n

(

x

)

d

x

=

1

n

+

1

tan

n

+

1

(

x

)

2

F

1

(

1

,

n

+

1

2

;

n

+

3

2

;

tan

2

(

x

)

)

+

C

(

n

1

)

{\displaystyle \int \tan ^{n}(x)\mathrm {d} x={\frac {1}{n+1}}\tan ^{n+1}(x)_{2}F_{1}\left(1,{\frac {n+1}{2}};{\frac {n+3}{2}};-\tan ^{2}(x)\right)+C\qquad (n\neq -1)}

csc

n

(

x

)

d

x

=

cos

(

x

)

2

F

1

(

1

2

,

n

+

1

2

;

3

2

;

cos

2

(

x

)

)

+

C

{\displaystyle \int \csc ^{n}(x)\mathrm {d} x=-\cos(x)_{2}F_{1}\left({\frac {1}{2}},{\frac {n+1}{2}};{\frac {3}{2}};\cos ^{2}(x)\right)+C}

sec

n

(

x

)

d

x

=

sin

(

x

)

2

F

1

(

1

2

,

n

+

1

2

;

3

2

;

sin

2

(

x

)

)

+

C

{\displaystyle \int \sec ^{n}(x)\mathrm {d} x=\sin(x)_{2}F_{1}\left({\frac {1}{2}},{\frac {n+1}{2}};{\frac {3}{2}};\sin ^{2}(x)\right)+C}

cot

n

(

x

)

d

x

=

1

n

+

1

cot

n

+

1

(

x

)

2

F

1

(

1

,

n

+

1

2

;

n

+

3

2

;

cot

2

(

x

)

)

+

C

(

n

1

)

{\displaystyle \int \cot ^{n}(x)\mathrm {d} x=-{\frac {1}{n+1}}\cot ^{n+1}(x)_{2}F_{1}\left(1,{\frac {n+1}{2}};{\frac {n+3}{2}};-\cot ^{2}(x)\right)+C\qquad (n\neq -1)}

其中

2

F

1

{\displaystyle {}_{2}F_{1}}

为超几何函数,

s

g

n

{\displaystyle \mathrm {sgn} }

为符号函数。

反三角函数

编辑

d

x

1

x

2

=

arcsin

(

x

)

+

C

{\displaystyle \int {\frac {\mathrm {d} x}{\sqrt {1-x^{2}}}}=\arcsin(x)+C}

d

x

a

2

x

2

=

arcsin

(

x

a

)

+

C

(

a

0

)

{\displaystyle \int {\frac {\mathrm {d} x}{\sqrt {a^{2}-x^{2}}}}=\arcsin \left({\tfrac {x}{a}}\right)+C\qquad (a\neq 0)}

d

x

1

+

x

2

=

arctan

(

x

)

+

C

{\displaystyle \int {\frac {\mathrm {d} x}{1+x^{2}}}=\arctan(x)+C}

d

x

a

2

+

x

2

=

arctan

(

x

a

)

a

+

C

(

a

0

)

{\displaystyle \int {\frac {\mathrm {d} x}{a^{2}+x^{2}}}={\frac {\arctan \left({\tfrac {x}{a}}\right)}{a}}+C\qquad (a\neq 0)}

指数和对数函数

编辑

e

x

d

x

=

e

x

+

C

{\displaystyle \int e^{x}\mathrm {d} x=e^{x}+C}

e

a

x

d

x

=

e

a

x

a

+

C

(

a

0

)

{\displaystyle \int e^{ax}\mathrm {d} x={\frac {e^{ax}}{a}}+C\qquad (a\neq 0)}

a

x

d

x

=

a

x

ln

(

a

)

+

C

(

a

>

0

,

a

1

)

{\displaystyle \int a^{x}\mathrm {d} x={\frac {a^{x}}{\ln(a)}}+C\qquad (a>0,a\neq 1)}

ln

(

x

)

d

x

=

x

ln

(

x

)

x

+

C

{\displaystyle \int \ln(x)\mathrm {d} x=x\ln(x)-x+C}

e

x

sin

(

x

)

d

x

=

e

x

2

(

sin

(

x

)

cos

(

x

)

)

+

C

{\displaystyle \int e^{x}\sin(x)\mathrm {d} x={\frac {e^{x}}{2}}(\sin(x)-\cos(x))+C}

e

x

cos

(

x

)

d

x

=

e

x

2

(

sin

(

x

)

+

cos

(

x

)

)

+

C

{\displaystyle \int e^{x}\cos(x)\mathrm {d} x={\frac {e^{x}}{2}}(\sin(x)+\cos(x))+C}

降阶公式

编辑

x

n

e

a

x

d

x

=

1

a

x

n

e

a

x

n

a

x

n

1

e

a

x

d

x

{\displaystyle \int x^{n}e^{ax}\mathrm {d} x={\frac {1}{a}}x^{n}e^{ax}-{\frac {n}{a}}\int x^{n-1}e^{ax}\mathrm {d} x}

反三角函数

编辑

arcsin

(

x

)

d

x

=

x

arcsin

(

x

)

+

1

x

2

+

C

{\displaystyle \int \arcsin(x)\mathrm {d} x=x\arcsin(x)+{\sqrt {1-x^{2}}}+C}

arccos

(

x

)

d

x

=

x

arccos

(

x

)

1

x

2

+

C

{\displaystyle \int \arccos(x)\mathrm {d} x=x\arccos(x)-{\sqrt {1-x^{2}}}+C}

arctan

(

x

)

d

x

=

x

arctan

(

x

)

1

2

ln

|

1

+

x

2

|

+

C

{\displaystyle \int \arctan(x)\mathrm {d} x=x\arctan(x)-{\frac {1}{2}}\ln |1+x^{2}|+C}

arccsc

(

x

)

d

x

=

x

arccsc

(

x

)

+

ln

|

x

+

x

1

1

x

2

|

+

C

{\displaystyle \int \operatorname {arccsc}(x)\mathrm {d} x=x\operatorname {arccsc}(x)+\ln \left|x+x{\sqrt {1-{\frac {1}{x^{2}}}}}\right|+C}

arcsec

(

x

)

d

x

=

x

arcsec

(

x

)

ln

|

x

+

x

1

1

x

2

|

+

C

{\displaystyle \int \operatorname {arcsec}(x)\mathrm {d} x=x\operatorname {arcsec}(x)-\ln \left|x+x{\sqrt {1-{\frac {1}{x^{2}}}}}\right|+C}

arccot

(

x

)

d

x

=

x

arccot

(

x

)

+

1

2

ln

|

1

+

x

2

|

+

C

{\displaystyle \int \operatorname {arccot}(x)\mathrm {d} x=x\operatorname {arccot}(x)+{\frac {1}{2}}\ln |1+x^{2}|+C}

双曲函数

编辑

基本双曲函数

编辑

sinh

(

x

)

d

x

=

i

sin

(

i

x

)

d

x

=

cos

(

i

x

)

+

C

=

cosh

(

x

)

+

C

{\displaystyle \int \sinh(x)\mathrm {d} x=-i\int \sin(ix)\mathrm {d} x=\cos(ix)+C=\cosh(x)+C}

cosh

(

x

)

d

x

=

cos

(

i

x

)

d

x

=

i

sin

(

i

x

)

+

C

=

sinh

(

x

)

+

C

{\displaystyle \int \cosh(x)\mathrm {d} x=\int \cos(ix)\mathrm {d} x=-i\sin(ix)+C=\sinh(x)+C}

tanh

(

x

)

d

x

=

i

tan

(

i

x

)

d

x

=

ln

|

cos

(

i

x

)

|

+

C

=

ln

|

cosh

(

x

)

|

+

C

{\displaystyle \int \tanh(x)\mathrm {d} x=-i\int \tan(ix)\mathrm {d} x=\ln \left|\cos(ix)\right|+C=\ln \left|\cosh(x)\right|+C}

倒数双曲函数

编辑

c

s

c

h

(

x

)

d

x

=

i

csc

(

i

x

)

d

x

=

log

|

i

tan

(

i

x

2

)

|

+

C

=

log

|

tanh

(

x

2

)

|

+

C

{\displaystyle \int \mathrm {csch} (x)\mathrm {d} x=i\int \csc(ix)\mathrm {d} x=\log \left|-i\tan \left({\frac {ix}{2}}\right)\right|+C=\log \left|\tanh \left({\frac {x}{2}}\right)\right|+C}

s

e

c

h

(

x

)

d

x

=

sec

(

i

x

)

d

x

=

2

a

r

t

a

n

h

(

i

tan

(

x

2

i

)

)

+

C

=

2

arctan

(

tanh

(

x

2

)

)

+

C

{\displaystyle \int \mathrm {sech} (x)\mathrm {d} x=\int \sec(ix)\mathrm {d} x=2\mathrm {artanh} \left(-i\tan \left({\frac {x}{2}}i\right)\right)+C=2\arctan \left(\tanh \left({\frac {x}{2}}\right)\right)+C}

c

o

t

h

(

x

)

d

x

=

i

cot

(

i

x

)

d

x

=

log

|

i

sin

(

i

x

)

|

+

C

=

log

|

sinh

(

x

)

|

+

C

{\displaystyle \int \mathrm {coth} (x)\mathrm {d} x=i\int \cot(ix)\mathrm {d} x=\log \left|-i\sin(ix)\right|+C=\log \left|\sinh(x)\right|+C}

反双曲函数

编辑

a

r

s

i

n

h

(

x

)

d

x

=

x

a

r

s

i

n

h

(

x

)

x

2

+

1

+

C

{\displaystyle \int \mathrm {arsinh} (x)\mathrm {d} x=x\mathrm {arsinh} (x)-{\sqrt {x^{2}+1}}+C}

a

r

c

o

s

h

(

x

)

d

x

=

x

a

r

c

o

s

h

(

x

)

x

2

1

+

C

{\displaystyle \int \mathrm {arcosh} (x)\mathrm {d} x=x\mathrm {arcosh} (x)-{\sqrt {x^{2}-1}}+C}

a

r

t

a

n

h

(

x

)

d

x

=

x

a

r

t

a

n

h

(

x

)

+

1

2

ln

(

1

x

2

)

+

C

{\displaystyle \int \mathrm {artanh} (x)\mathrm {d} x=x\mathrm {artanh} (x)+{\frac {1}{2}}\ln(1-x^{2})+C}

a

r

c

s

c

h

(

x

)

d

x

=

x

a

r

c

s

c

h

(

x

)

+

|

a

r

s

i

n

h

(

x

)

|

+

C

{\displaystyle \int \mathrm {arcsch} (x)\mathrm {d} x=x\mathrm {arcsch} (x)+|\mathrm {arsinh} (x)|+C}

a

r

s

e

c

h

(

x

)

d

x

=

x

a

r

s

e

c

h

(

x

)

+

arcsin

(

x

)

+

C

{\displaystyle \int \mathrm {arsech} (x)\mathrm {d} x=x\mathrm {arsech} (x)+\arcsin(x)+C}

a

r

t

a

n

h

(

x

)

d

x

=

x

a

r

c

o

t

h

(

x

)

+

1

2

ln

(

x

2

1

)

+

C

{\displaystyle \int \mathrm {artanh} (x)\mathrm {d} x=x\mathrm {arcoth} (x)+{\frac {1}{2}}\ln(x^{2}-1)+C}

杂项

编辑

|

f

(

x

)

|

d

x

=

s

g

n

(

f

(

x

)

)

f

(

x

)

d

x

{\displaystyle \int |f(x)|\mathrm {d} x=\mathrm {sgn} (f(x))\int f(x)\mathrm {d} x}

,其中

s

g

n

{\displaystyle \mathrm {sgn} }

为符号函数。

定积分

编辑

[

0

,

1

]

n

i

=

1

n

d

x

i

1

i

=

1

n

x

i

=

ζ

(

n

)

{\displaystyle \int _{[0,1]^{n}}{\frac {\prod _{i=1}^{n}\mathrm {d} x_{i}}{1-\prod _{i=1}^{n}x_{i}}}=\zeta (n)}

,其中整数

n

>

1

{\displaystyle n>1}

ζ

{\displaystyle \zeta }

为黎曼ζ函數。

e

x

2

d

x

=

π

{\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\mathrm {d} x={\sqrt {\pi }}}

0

1

t

u

1

(

1

t

)

v

1

d

t

=

β

(

u

,

v

)

=

Γ

(

u

)

Γ

(

v

)

Γ

(

u

+

v

)

{\displaystyle \int _{0}^{1}t^{u-1}(1-t)^{v-1}\mathrm {d} t=\beta (u,v)={\frac {\Gamma (u)\Gamma (v)}{\Gamma (u+v)}}}

,其中

Γ

{\displaystyle \Gamma }

为Γ函数。

0

t

s

1

e

t

d

t

=

Γ

(

s

)

{\displaystyle \int _{0}^{\infty }t^{s-1}e^{-t}\mathrm {d} t=\Gamma (s)}

0

2

π

e

u

cos

θ

d

θ

=

2

π

I

0

(

u

)

{\displaystyle \int _{0}^{2\pi }e^{u\cos \theta }\mathrm {d} \theta =2\pi I_{0}(u)}

,其中

I

0

{\displaystyle I_{0}}

为第一类修正贝塞尔函数。

0

sin

(

x

)

x

d

x

=

π

2

{\displaystyle \int _{0}^{\infty }{\frac {\sin(x)}{x}}\mathrm {d} x={\frac {\pi }{2}}}

← 导数表

微积分学

积分表

章节导航:

目录 ·

预备知识 ·

极限 ·

导数 ·

积分 ·

极坐标方程与参数方程 ·

数列和级数 ·

多元函数微积分 ·

扩展知识 ·

附录

相关数据流